题目内容

【题目】已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形

(1)求证:△DFB是等腰三角形;
(2)若DA= AF,求证:CF⊥AB.

【答案】
(1)证明:∵AB是⊙O直径,

∴∠ACB=90°,

∵△AEF为等边三角形,

∴∠CAB=∠EFA=60°,

∴∠B=30°,

∵∠EFA=∠B+∠FDB,

∴∠B=∠FDB=30°,

∴△DFB是等腰三角形


(2)证明:过点A作AM⊥DF于点M,设AF=2a,

∵△AEF是等边三角形,∴FM=EM=a,AM= a,

在Rt△DAM中,AD= AF=2 a,AM= a,

∴DM=5a,∴DF=BF=6a,

∴AB=AF+BF=8a,

在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,

∵AE=EF=AF=2a,

∴CE=AC﹣AE=2a,

∴∠ECF=∠EFC,

∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,

∴∠AFC=∠AFE+∠EFC=60°+30°=90°,

∴CF⊥AB.


【解析】(1)由AB是⊙O直径,得到∠ACB=90°,由于△AEF为等边三角形,得到∠CAB=∠EFA=60°,根据三角形的外角的性质即可得到结论;(2)过点A作AM⊥DF于点M,设AF=2a,根据等边三角形的性质得到FM=EM=a,AM= a,在根据已知条件得到AB=AF+BF=8a,根据直角三角形的性质得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根据三角形的内角和即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网