题目内容
【题目】随着智能手机的普及,“支付宝支付”和“微信支付”等手机支付方式倍受广大消费者的青睐,某商场对2019年712月中使用这两种手机支付方式的情况进行统计,得到如图所示的折线图,根据统计图中的信息,得出以下四个推断,其中不合理的是( )
A.6个月中使用“微信支付”的总次数比使用“支付宝支付”的总次数多;
B.6个月中使用“微信支付”的消费总额比使用“支付宝支付”的消费总额大;
C.6个月中11月份使用手机支付的总次数最多;
D.9月份平均每天使用手机支付的次数比12月份平均每天使用手机支付的次数多;
【答案】B
【解析】
从折线统计图中得到每个月使用“微信支付”的次数、使用“支付宝支付”的次数,计算后即可判断.
解:A、6个月中使用“微信支付”的总次数=5.69+4.82+5.21+4.89+4.86+5.12=30.59,
6个月中使,“支付宝支付”的总次数=3.21+4.03+4.21+4.17+5.47+4.31=25.4,
∴6个月中使用“微信支付”的总次数比使用“支付宝支付”的总次数多,本选项说法合理;
B、从统计图中不能得到消费总额的信息,本选项说法不合理;
C、7月份使用手机支付的总次数为5.69+3.21=8.9,
8月份使用手机支付的总次数为4.82+4.03=8.85,
9月份使用手机支付的总次数为5.21+4.21=9.42,
10月份使用手机支付的总次数为4.89+4.17=9.06,
11月份使用手机支付的总次数为4.86+5.47=10.33,
12月份使用手机支付的总次数为5.12+4.31=9.43,
∴6个月中11月份使用手机支付的总次数最多,本选项说法合理;
D、9月份平均每天使用手机支付的次数比12月份平均每天使用手机支付的次数多,本选项说法合理;
故选:B.
【题目】如图,P是线段AB上的一点,AB=6cm,O是AB外一定点.连接OP,将OP绕点O顺时针旋转120°得OQ,连接PQ,AQ.小明根据学习函数的经验,对线段AP,PQ,AQ的长度之间的关系进行了探究.
下面是小明的探究过程,请补充完整:
(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,PQ,AQ的长度(单位:cm)的几组值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PQ | 4.00 | 2.31 | 0.84 | 1.43 | 3.07 | 4.77 | 6.49 |
AQ | 4.00 | 3.08 | 2.23 | 1.57 | 1.40 | 1.85 | 2.63 |
在AP,PQ,AQ的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;/span>
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当AQ=PQ时,线段AP的长度约为 cm.
【题目】疫情期间,甲、乙、丙、丁4名同学约定周一至周五每天做一组俯卧撑.为了增加趣味性,他们通过游戏方式确定每个人每天的训练计划.
首先,按如图方式摆放五张卡片,正面标有不同的数字代表每天做俯卧撑的个数,反面标有,,,,便于记录.
具体游戏规则如下:
甲同学:同时翻开,,将两个数字进行比较,然后由小到大记录在表格中,,,按原顺序记录在表格中;
乙同学:同时翻开,,,将三个数字进行比较,然后由小到大记录在表格中,,按原顺序记录在表格中;
以此类推,到丁同学时,五张卡片全部翻开,并由小到大记录在表格中.
下表记录的是这四名同学五天的训练计划:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | |
甲同学 | |||||
乙同学 | |||||
丙同学 | |||||
丁同学 |
根据记录结果解决问题:
(1)补全上表中丙同学的训练计划;
(2)已知每名同学每天至少做30个,五天最多做180个.
①如果,,那么所有可能取值为__________________________;
②这四名同学星期_________做俯卧撑的总个数最多,总个数最多为_________个.