题目内容
【题目】请阅读下列材料:
问题:如图,在正方形和平行四边形
中,点
,
,
在同一条直线上,
是线段
的中点,连接
,
.
探究:当与
的夹角为多少度时,平行四边形
是正方形?
小聪同学的思路是:首先可以说明四边形是矩形;然后延长
交
于点
,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
(1)求证:四边形是矩形;
(2)与
的夹角为________度时,四边形
是正方形.
理由:
【答案】(1)详见解析;(2)90.
【解析】
(1)由正方形ABCD,易得∠EBG=90°,根据有一个角是直角的平行四边形是矩形,即可证得四边形BEFG是矩形;
(2)首先作辅助线:延长GP交DC于点H,根据正方形与平行四边形的性质,利用AAS易得△DHP≌△FGP,则有HP=GP,当∠CPG=90°时,利用SAS易证△CPH≌△CPG,根据全等三角形与正方形的性质,即可得BG=GF,根据有一组邻边相等的平行四边形是菱形,可得BEFG是菱形,而∠EBG=90°,即得四边形BEFG是正方形.
(1)∵正方形ABCD中,∠ABC=90°,
∴∠EBG=90°,
∴BEFG是矩形;
(2)90°;
理由:延长GP交DC于点H,
∵正方形ABCD和平行四边形BEFG中,AB∥DC,BE∥GF,
∴DC∥GF,
∴∠HDP=∠GFP,∠DHP=∠FGP,
∵P是线段DF的中点,
∴DP=FP,
∴△DHP≌△FGP,
∴HP=GP,
当∠CPG=90°时,∠CPH=∠CPG,
∵CP=CP,
∴△CPH≌△CPG,
∴CH=CG,
∵正方形ABCD中,DC=BC,
∴DH=BG,
∵△DHP≌△FGP,
∴DH=GF,
∴BG=GF,
∴BEFG是菱形,
由(1)知四边形BEFG是矩形,
∴四边形BEFG是正方形.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目