题目内容

【题目】如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?

【答案】
(1)证明:在正方形ABCD中,

∴△CBE≌△CDF(SAS).

∴CE=CF


(2)解:GE=BE+GD成立.

理由是:∵由(1)得:△CBE≌△CDF,

∴∠BCE=∠DCF,

∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,

又∵∠GCE=45°,∴∠GCF=∠GCE=45°.

∴△ECG≌△FCG(SAS).

∴GE=GF.

∴GE=DF+GD=BE+GD.


【解析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
【考点精析】根据题目的已知条件,利用正方形的性质的相关知识可以得到问题的答案,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网