题目内容
【题目】如图,已知矩形中,与相交于,平分交于,,则的度数为_______.
【答案】
【解析】
先求出∠ADB,再说明三角形ODC是等边三角形,推出CD=OC,CE=CD,求出CE=OC,求出∠COE=∠OEC和∠OCB=30°即可解答.
解:∵四边形ABCD是矩形,
∴AD//BC,∠ADC=90°,OA=OC,OB=OD,AC=BD,
∵DE平分∠ADC,
∴∠ADE=∠CDE=∠ADC=45°,
∵∠BDE=15°,
∴∠ADB=∠ADE-∠BDE=30°,
∵AD∥BC,
∴∠ADB=∠DBC=30°,
∴OA=OD=OB=OC,
∴∠OBC=∠OCB=30°,
∴∠DOC=∠OBC+∠OCB=60°,
∵OD=OC,
∴△ODC是等边三角形,
∴DC=OC,
∵AD∥BC,
∴∠ADE=∠DEC
∴∠ADE=∠CDE,
∴∠DEC=∠CDE,
∴CE=DC
∴CE=OC,
∴∠COE=∠OEC,
∵∠OCB=30°,
∴∠COE=(180°-∠OCE)=75°.
故答案为75°.
练习册系列答案
相关题目
【题目】为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口A的费用分别为14元/吨,20元/吨;从甲、乙两仓库运送物资到港口B的费用分别为10元/吨、8元/吨.
(Ⅰ)设从甲仓库运往A港口x吨,试填写表格.
表一
港口 | 从甲仓库运(吨) | 从乙仓库运(吨) |
A港 |
|
|
B港 |
|
|
表二
港口 | 从甲仓库运到港口费用(元) | 从乙仓库运到港口费用(元) |
A港 | 14x |
|
B港 |
|
|
(Ⅱ)给出能完成此次运输任务的最节省费用的调配方案,并说明理由.