题目内容
【题目】二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.
(1)求该二次函数的对称轴方程;
(2)过动点C(0,n)作直线l⊥y轴. ①当直线l与抛物线只有一个公共点时,求n与m的函数关系;
②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;
(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.
【答案】
(1)解:∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,
∴对称轴方程为x=1
(2)解:①如图,由题意知直线l的解析式为y=n,
∵直线l与抛物线只有一个公共点,
∴n=﹣2m+3.
②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.
∴m=5
(3)解:抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).
依题可得 解得
∴m的取值范围是﹣2<m≤1
【解析】(1)将抛物线解析式配方成顶点式即可得;(2)①画出函数的大致图象,由图象知直线l经过顶点式时,直线l与抛物线只有一个交点,据此可得;②画出翻折后函数图象,由直线l与新的图象恰好有三个公共点可得﹣2m+3=﹣7,解之可得;(3)由开口向上及函数值都不小于1可得 ,解之即可.
【考点精析】解答此题的关键在于理解二次函数图象的平移的相关知识,掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减,以及对抛物线与坐标轴的交点的理解,了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
【题目】某环保小组为了了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A,B,C三个出口处对离开园区的游客进行调查,并将在A出口调查所得到的数据整理后绘成了如图所示的统计图:
(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的______%;
(2)试问:A出口的被调查游客在园区内人均购买了多少瓶饮料?
(3)已知B,C两个出口的被调查游客在园区内人均购买饮料的数量如下表所示:
出口 | B | C |
人均购买饮料数量(瓶) | 3 | 2 |
若C出口的被调查人数比B出口的被调查人数多2万人,且B,C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问:B出口的被调查游客有多少万人?