题目内容
【题目】如图,数轴上A,B两点对应的有理数分别为xA=﹣5和xB=6,动点P从点A出发,以每秒1个单位的速度沿数轴在A,B之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在B,A之间往返运动.设运动时间为t秒.
(1)当t=2时,点P对应的有理数xP=______,PQ=______;
(2)当0<t≤11时,若原点O恰好是线段PQ的中点,求t的值;
(3)我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,直接写出此整点对应的数.
【答案】(1)﹣3,5;(2)t=1或7;(3)6.
【解析】
(1)先求出P,Q对应的数,再求PQ的值;(2)结合数轴①当0<t<5.5时,点Q运动还未到点A,有AP=t,BQ=2t.此时OP=|5﹣t|,OQ=|6﹣2t|.②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,要使原点O恰好是线段PQ的中点,点Q必须位于原点O左侧;列出相应方程即可;(3)分两种情况求出t: ①当0<t<5.5时,点Q运动还未到点A,当P,Q两点重合时,P与Q相遇;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,当P,Q两点重合时,点Q追上点P,AQ=AP.
解:(1)当t=2时,点P对应的有理数xP=﹣5+1×2=﹣3,
点Q对应的有理数xQ=6﹣2×2=2,
∴PQ=2﹣(﹣3)=5.
故答案为﹣3,5;
(2)∵xA=﹣5,xB=6,
∴OA=5,OB=6.
由题意可知,当0<t≤11时,点P运动的最远路径为数轴上从点A到点B,点Q运动的最远路径为数轴上从点B到点A并且折返回到点B.
对于点P,因为它的运动速度vP=1,点P从点A运动到点O需要5秒,运动到点B需要11秒.
对于点Q,因为它的运动速度vQ=2,点Q从点B运动到点O需要3秒,运动到点A需要5.5秒,返回到点B需要11秒.
要使原点O恰好是线段PQ的中点,需要P,Q两点分别在原点O的两侧,且OP=OQ,此时t≠5.5.
①当0<t<5.5时,点Q运动还未到点A,有AP=t,BQ=2t.
此时OP=|5﹣t|,OQ=|6﹣2t|.
∵原点O恰好是线段PQ的中点,
∴OP=OQ,
∴|5﹣t|=|6﹣2t|,
解得t=1或t=.
检验:当t=时,P,Q两点重合,且都在原点O左侧,不合题意舍去;t=1符合题意.
∴t=1;
②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,要使原点O恰好是线段PQ的中点,点Q必须位于原点O左侧,此时P,Q两点的大致位置如下图所示.
此时,OP=AP﹣OA=t﹣5,OQ=OA﹣AQ=5﹣2(t﹣5.5)=16﹣2t.
∵原点O恰好是线段PQ的中点,
∴OP=OQ,
∴t﹣5=16﹣2t,
解得t=7.
检验:当t=7时符合题意.
∴t=7.
综上可知,t=1或7;
(3)①当0<t<5.5时,点Q运动还未到点A,当P,Q两点重合时,P与Q相遇,此时需要的时间为:秒,
相遇点对应的数为﹣5+=﹣,不是整点,不合题意舍去;
②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,当P,Q两点重合时,点Q追上点P,AQ=AP,
2(t﹣5.5)=t,解得t=11,
追击点对应的数为﹣5+11=6.
故当P,Q两点第一次在整点处重合时,此整点对应的数为6.