题目内容
【题目】如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.
(1)求该抛物线的解析式;
(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.
(3)在(2)的条件下,点Q是线段OB上一动点,当△BPQ与△BAC相似时,求点Q的坐标.
【答案】(1) ;(2)存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9;(3)Q的坐标或.
【解析】
(1)将A(1,0)、B(4,0)、C(0,3)代入y=ax2+bx+c,求出a、b、c即可;
(2)四边形PAOC的周长最小值为:OC+OA+BC=1+3+5=9;
(3)分两种情况讨论:①当△BPQ∽△BCA,②当△BQP∽△BCA.
解:(1)由已知得,
解得
所以,抛物线的解析式为;
(2)∵A、B关于对称轴对称,如下图,连接BC,与对称轴的交点即为所求的点P,此时PA+PC=BC,
∴四边形PAOC的周长最小值为:OC+OA+BC,
∵A(1,0)、B(4,0)、C(0,3),
∴OA=1,OC=3,BC=5,
∴OC+OA+BC=1+3+5=9;
∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9;
(3)如上图,设对称轴与x轴交于点D.
∵A(1,0)、B(4,0)、C(0,3),
∴OB=4,AB=3,BC=5,
直线BC:,
由二次函数可得,对称轴直线,
∴,
①当△BPQ∽△BCA,
,
,
,
,
②当△BQP∽△BCA,
,
,
,
,
,
综上,求得点Q的坐标或
练习册系列答案
相关题目