题目内容
【题目】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.
已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.
(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,
①求∠DAF的度数;
②求证:△ADE≌△ADF;
(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;
(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为 .
【答案】(1)①30°②见解析(2)BD2+CE2=DE2(3)
【解析】
(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;
(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;
(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.
解:(1)①由旋转得,∠FAB=∠CAE,
∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,
∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;
②由旋转知,AF=AE,∠BAF=∠CAE,
∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,
在△ADE和△ADF中,,
∴△ADE≌△ADF(SAS);
(2)BD2+CE2=DE2,
理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,
∴BF=CE,∠ABF=∠ACB,
由(1)知,△ADE≌△ADF,
∴DE=DF,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,
根据勾股定理得,BD2+BF2=DF2,
即:BD2+CE2=DE2;
(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,
∴BF=CE,∠ABF=∠ACB,
由(1)知,△ADE≌△ADF,
∴DE=DF,BF=CE=5,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=30°,
∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,
过点F作FM⊥BC于M,
在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,
BF=5,
∴,
∵BD=4,
∴DM=BD﹣BM=,
根据勾股定理得, ,
∴DE=DF=,
故答案为.