题目内容

【题目】如图1,直线l交x轴于点C,交y轴于点D,与反比例函数y= (k>0)的图像交于两点A、E,AG⊥x轴,垂足为点G,SADG=3

(1)k=
(2)求证:AD=CE;
(3)如图2,若点E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积.

【答案】
(1)6
(2)

证明:如图1中,作AN⊥OD于N,EM⊥OC于M.设直线CD的解析式为y=kx+b,A(x1,y1),E(x2,y2).

则有y1=kx1+b,y2=kx2+b,

∴y2﹣y1=k(x2﹣x1),

=k(x2﹣x1),

∴﹣kx1x2=3,

∴﹣kx1=

∴y2=﹣kx1

∴EM=﹣kAN,

∵D(0,b),C(﹣ ,0),

∴tan∠DCO= =﹣k=

∴EM=﹣kMC,

∴AN=CM,

∵AN∥CM,

∴∠DAN=∠ECM,

在△DAN和△ECM中,

∴△DAN≌△ECM,

∴AD=EC


(3)

解:如图2中,连接GD,GE.

∵EA=EC,AD=EC,

∴AD=AE=EC,

∴SADG=SAGE=SGEC=3,

∵SAOG=SADG=3,

∴SAOC=3+3+3=9,

∴平行四边形ABCD的面积=2SAOC=18


【解析】(1)解:设A(m,n),
OGAG=3,
mn=3,
∴mn=6,
∵点A在y= 上,
∴k=mn=6.
所以答案是6.
【考点精析】掌握全等三角形的性质是解答本题的根本,需要知道全等三角形的对应边相等; 全等三角形的对应角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网