题目内容
【题目】如图,已知Rt△ABC中,∠ACB=90°,以AC为直径的圆O交斜边AB于D.过D作DE⊥AC于E,将△ADE沿直线AB翻折得到△ADF.
(1)求证:DF是⊙O的切线;
(2)若⊙O的半径为10,sin∠FAD=,延长FD交BC于G,求BG的长.
【答案】(1)见解析(2)
【解析】
(1)由△ADE沿直线AB翻折得到△ADF,得到∠DAE=∠DAF,∠AED=∠F=90°,由于OA=OD,于是得到∠DAE=∠ODA,根据平行线的判定定理得到OD∥AF,根据平行线的性质得到OD⊥DF,于是得到结论;
(2)连接DC,由于AC是 O的直径,即CD⊥AB;又FD与BC均是 O的切线且相交于点G由切线长定理可得:GD=GC,于是得到∠GDC=∠GCD,由于GD是Rt△BDC斜边上的中线,即GD=BC,由于△ADE沿直线AB翻折得到△ADF,得到sin∠DAE=sin∠DAF=,解直角三角形得到sin∠DAC===,得DC=6,由勾股定理得AD=8;根据三角形相似即可得到结论.
(1)证明:
∵△ADE沿直线AB翻折得到△ADF,
∴∠DAE=∠DAF,∠AED=∠F=90°,
又∵OA=OD,
∴∠DAE=∠ODA,
∴∠DAF=∠ODA,
∴OD∥AF,
∴∠ODF+∠F=180°,
∴∠ODF=90°,
∴OD⊥DF,
∴DF是O的切线;
(2)连接DC,
∵AC是圆O的直径,
∴∠ADC=90°,即CD⊥AB;
又∵FD与BC均是圆O的切线且相交于点G,
由切线长定理可得:GD=GC,
∴∠GDC=∠GCD,
又∵Rt△BDC中,∠GCD+∠B=90°,∠GDC+∠GDB=90°,
∴∠B=∠GDB,
∴GD=GB,
∴GD是Rt△BDC斜边上的中线,即GD=BC,
∵△ADE沿直线AB翻折得到△ADF,
∴∠DAE=∠DAF,
∴sin∠DAE=sin∠DAF=,
又∵圆O的半径为5,
∴AC=10,
Rt△DAC中,∠ADC=90°,
∴sin∠DAC=DCAC=DC10=,得DC=6,
由勾股定理得AD=8;
在Rt△ADC与Rt△ACB中,∠ADC=∠ACB=90°,∠DAC=∠BAC,
∴Rt△ADC∽Rt△ACB,
∴,即,解得BC=;
∴GB=GD=BC=.