题目内容

【题目】如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.

【答案】
(1)证明:(1)∵DE∥AC,∠ADE=∠DAF,

同理∠DAE=∠FDA,

∵AD=DA,

∴△ADE≌△DAF,

∴AE=DF;


(2)解:若AD平分∠BAC,四边形AEDF是菱形,

∵DE∥AC,DF∥AB,

∴四边形AEDF是平行四边形,

∴∠DAF=∠FDA.

∴AF=DF.

∴平行四边形AEDF为菱形.


【解析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证AEDF实菱形.
【考点精析】本题主要考查了菱形的判定方法的相关知识点,需要掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网