题目内容
【题目】如图(1),在中,,,点是斜边的中点,点,分别在线段,上, 且.
(1)求证:为等腰直角三角形;
(2)若的面积为7,求四边形的面积;
(3)如图(2),如果点运动到的延长线上时,点在射线上且保持,还是等腰直角三角形吗.请说明理由.
【答案】(1)证明见解析;(2)3.5;(3)是,理由见解析.
【解析】
(1)由题意连接AD,并利用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得为等腰直角三角形;
(2)由题意分析可得S四边形AEDF=SADF+SADE=SBDE+SCDF,以此进行分析计算求出四边形的面积即可;
(3)根据题意连接AD,运用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得为等腰直角三角形.
解:(1)证明:如图①,连接AD.
∵∠BAC=90,AB=AC,点D是斜边BC的中点,
∴AD⊥BC,AD=BD,
∴∠1=∠B=45°,
∵∠EDF=90°,∠2+∠3=90°,
又∵∠3+∠4=90°,
∴∠2=∠4,
在△BDE 和△ADF中,∠1=∠B,AD=BD,∠2=∠4,
∴△BDE≌△ADF(ASA),
∴DE=DF,
又∵∠EDF=90°,
∴ΔDEF为等腰直角三角形.
(2)由(1)可知DE=DF,∠C=∠6=45°,
又∵∠2+∠3=90°,∠2+∠5=90°,
∴∠3=∠5,
∴△ADE≌△CDF,
∴S四边形AEDF=SADF+SADE=SBDE+SCDF,
∴ SABC=2 S四边形AEDF,
∴S四边形AEDF=3.5 .
(3)是.如图②,连接AD.
∵∠BAC=90°,AB=AC,D是斜边BC的中点,
∴AD⊥BC,AD=BD ,
∴∠1=45°,
∵∠DAF=180°-∠1=180°—45°=135°,∠DBE=180°-∠ABC=180°-45°=135°,
∴∠DAF=∠DBE,
∵∠EDF=90°,
∴∠3+∠4=90°,
又∵∠2+∠3=90°,
∴∠2=∠4,
在△BDE和△ADF中,∠DAF=∠DBE,AD=BD,∠2=∠4,
∴△BDE≌△ADF(ASA),
∴DE=DF,
又∵∠EDF=90°,
∴△DEF为等腰直角三角形.
【题目】二次函数(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
给出了结论:
(1)二次函数有最小值,最小值为﹣3;
(2)当时,y<0;
(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.
则其中正确结论的个数是
A. 3 B. 2 C. 1 D. 0