题目内容
【题目】如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).
【答案】该渔船从B处开始航行小时,离观测点A的距离最近.
【解析】
试题分析:首先根据题意可得PC⊥AB,然后设PC=x海里,分别在Rt△APC中与Rt△APB中,利用正切函数求得出PC与BP的长,由PC+BP=BC=30×,即可得方程,解此方程求得x的值,再计算出BP,然后根据时间=路程÷速度即可求解.
解:过点A作AP⊥BC,垂足为P,设AP=x海里.
在Rt△APC中,∵∠APC=90°,∠PAC=30°,
∴tan∠PAC=,
∴CP=APtan∠PAC=x.
在Rt△APB中,∵∠APB=90°,∠PAB=45°,
∴BP=AP=x.
∵PC+BP=BC=30×,
∴x+x=15,
解得x=,
∴PB=x=,
∴航行时间:÷30=(小时).
答:该渔船从B处开始航行小时,离观测点A的距离最近.
练习册系列答案
相关题目