题目内容
【题目】点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为( )
A. B. C. D.
【答案】A
【解析】
根据切线的性质得到EG⊥AB,FG⊥AC,连接AG并延长交BC于S,根据重心的性质得到BS=CS=BC=3,延长AS到O时SO=AS,根据全等三角形的性质得到∠O=∠CAS,AC=OB,由勾股定理得到AS=,根据相似三角形的性质即可得到结论.
设⊙G与边AB,AC相切于E,F,连接EG,FG,
则EG⊥AB,FG⊥AC,
连接AG并延长交BC于S,
∵EG=FG,
∴∠BAS=∠CAS,
∵点G为△ABC的重心,
∴BS=CS=BC=3,
延长AS到O时SO=AS,
在△ACS与△OBS中,
∴△ACS≌△OBS(SAS),
∴∠O=∠CAS,AC=OB,
∵∠BAS=∠CAS,
∴∠BAS=∠O,
∴AB=BO,
∴AB=AC,
∴AS⊥BC,
∴AS=,
∴AG=AS=,SG=AS=,
∵∠EAG=∠SAB,∠AEG=∠ASB=90°,
∴△AEG∽△ASB,
∴,
∴,
∴EG=,
连接GH,
∴GH=,
∴HS=,
∴HK=2HS=.
故选:A.
【题目】某度假村拥有客房40间,该度假村在经营中发现每间客房日租金x(元)与每日租出的客房数(y)有如下关系:
x | 200 | 220 | 260 | 280 |
y | 40 | 35 | 25 | 20 |
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每日租出的客房数y(间)与每间客房的日租金x(元)之间的关系式.
(2)已知租出的每间客房每日需要清洁费80元,未租出的每间客房每日需要清洁费40元.含x(x≥200)的代数式填表:
租出的客房数 | ______ | 未租出的客房数 | ______ |
租出的每间客房的日收益 | ______ | 所有未租出的客房每日的清洁费 | ______ |
(3)若你是该度假村的老板,你会将每间客房的日租金定为多少元,才能使度假村获得最大日收益?最大日收益是多少元?