题目内容
【题目】如图1,在矩形ABCD中,E是边BC上一点,连接AE,过点D作DF⊥AE于点F.
(1)若AE=DA,求证:△ABE≌△DFA.
(2)若AB=6,AD=8,且E为BC中点.
①如图2,连接CF,求sin∠DCF的值.
②如图3,连接AC交DF于点M,求CM:AM的值.
【答案】(1)见解析;(2)①,②
【解析】
(1)根据AAS证明三角形全等即可;
(2)①如图2中,过点F作FH⊥CD于H,FJ⊥AD于J.利用相似三角形的性质求出AF,DF,解直角三角形求出FJ,DJ,CH,FH即可解决问题;
②如图3中,延长DF交CB的延长线于K.利用相似三角形的性质求出KE,再利用平行线分线段成比例定理求解即可.
(1)证明:如图1中,
∵四边形ABCD是矩形,
∴∠B=90°,AD∥BC,
∴∠DAF=∠AEB,
∵DF⊥AE,
∴∠B=∠AFD=90°,
在△ABE和△DFA中
,
∴△ABE≌△DFA(AAS).
(2)①解:如图2中,过点F作FH⊥CD于H,FJ⊥AD于J.
∵四边形ABCD是矩形,AB=CD=6,BC=AD=8,
∴∠B=90°,
∵BE=EC=4,
∴AE===2,
∵∠DAF=∠AEB,∠B=∠AFD=90°,
∴△ABE∽△DFA,
∴==,
∴==,
∴DF=,AF=,
∵FJ⊥AD,
∴FJ=DH==,DJ=FH===,
∴CH=CD﹣DH=6﹣=,
∴CF===6,
∴sin∠DCF===.
②解:如图3中,延长DF交CB的延长线于K.
∵∠KEF=∠AEB,∠EFK=∠ABE=90°,
∴△KEF∽△AEB,
∴=,
∴=,
∴KE=5,
∴CK=KE+EC=9,
∵AD∥CK,
∴==.
练习册系列答案
相关题目