题目内容

【题目】已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
(4)问:若抛物线顶点为D,点Q为直线AC上一动点,当△DOQ的周长最小时,求点Q的坐标

【答案】
(1)

解:方法一:

将A(﹣1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:

解得:

∴抛物线的解析式:y=﹣x2+2x+3

方法二:

∵A(﹣1,0)、B(3,0)、C(0,3),

∴y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3


(2)

解:方法一:

连接BC,直线BC与直线l的交点为P;

∵点A、B关于直线l对称,

∴PA=PB,

∴BC=PC+PB=PC+PA

设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:

,解得:

∴直线BC的函数关系式y=﹣x+3;

当x=1时,y=2,即P的坐标(1,2)

方法二:

连接BC,

∵l为对称轴,

∴PB=PA,

∴C,B,P三点共线时,△PAC周长最小,把x=1代入lBC:y=﹣x+3,得P(1,2)


(3)

解:方法一:

抛物线的对称轴为:x=﹣ =1,设M(1,m),已知A(﹣1,0)、C(0,3),则:

MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;

①若MA=MC,则MA2=MC2,得:

m2+4=m2﹣6m+10,得:m=1;

②若MA=AC,则MA2=AC2,得:

m2+4=10,得:m=±

③若MC=AC,则MC2=AC2,得:

m2﹣6m+10=10,得:m1=0,m2=6;

当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;

综上可知,符合条件的M点,且坐标为 M(1, )(1,﹣ )(1,1)(1,0).

方法二:

设M(1,t),A(﹣1,0),C(0,3),

∵△MAC为等腰三角形,

∴MA=MC,MA=AC,MC=AC,

(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,

(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±

(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,

经检验,t=6时,M、A、C三点共线,故舍去,

综上可知,符合条件的点有4个,M1(1, ),M2(1,﹣ ),M3(1,1),M4(1,0)


(4)

解:作点O关于直线AC的对称点O交AC于H,

作HG⊥AO,垂足为G,

∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,

∴∠GHO=∠GAH,

∴△GHO∽△GAH,

∴HG2=GOGA,

∵A(﹣1,0),C(0,3),

∴lAC:y=3x+3,H(﹣ ),

∵H为OO′的中点,

∴O′(﹣ ),

∵D(1,4),

∴lO′D:y= x+ ,lAC:y=3x+3,

∴x=﹣ ,y=

∴Q(﹣


【解析】方法一:(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可.(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.
方法二:(1)略.(2)找出A点的对称点点B,根据C,P,B三点共线求出BC与对称轴的交点P.(3)用参数表示的点M坐标,分类讨论三种情况,利用两点间距离公式就可求解.(4)先求出AC的直线方程,利用斜率垂直公式求出OO’斜率及其直线方程,并求出H点坐标,进而求出O’坐标,求出DO’直线方程后再与AC的直线方程联立,求出Q点坐标.
【考点精析】根据题目的已知条件,利用二次函数的概念的相关知识可以得到问题的答案,需要掌握一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网