题目内容

【题目】如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:△PCF是等腰三角形;
(3)若AF=6,EF=2 ,求⊙O 的半径长.

【答案】
(1)证明:∵PD为⊙O的切线,

∴OC⊥DP,

∵AD⊥DP,

∴OC∥AD,

∴∠DAC=∠OCA,

∵OA=OC,

∴∠OAC=∠OCA,

∴∠OAC=∠DAC,

∴AC平分∠DAB


(2)证明:∵AB为⊙O的直径,

∴∠ACB=90°,

∵CE平分∠ACB,

∴∠BCE=45°,

∴∠BOE=2∠BCE=90°,

∴∠OFE+∠OEF=90°,

而∠OFE=∠CFP,

∴∠CFP+∠OEF=90°,

∵OC⊥PD,

∴∠OCP=90°,即∠OCF+∠PCF=90°,

而∠OCF=∠OEF,

∴∠PCF=∠CFP,

∴△PCF是等腰三角形


(3)解:连结OE.

∵AB为⊙O的直径,∴∠ACB=90°,

∵CE平分∠ACB,∴∠BCE=45°,

∴∠BOE=90°,即OE⊥AB,

设⊙O 的半径为r,则OF=6﹣r,

在Rt△EOF中,∵OE2+OF2=EF2

∴r2+(6﹣r)2=(2 2

解得,r1=4,r2=2,

当r1=4时,OF=6﹣r=2(符合题意),

当r2=2时,OF=6﹣r=4(不合题意,舍去),

∴⊙O的半径r=4.


【解析】(1)根据切线的性质得OC⊥AD,而AD⊥DP,则肯定判断OC∥AD,根据平行线的性质得∠DAC=∠OCA,加上∠OAC=∠OCA,所以∠OAC=∠DAC;(2)根据圆周角定理由AB为⊙O的直径得∠ACB=90°,则∠BCE=45°,再利用圆周角定理得∠BOE=2∠BCE=90°,则∠OFE+∠OEF=90°,易得∠CFP+∠OEF=90°,再根据切线的性质得到∠OCF+∠PCF=90°,而∠OCF=∠OEF,根据等角的余角相等得到∠PCF=∠CFP,于是可判断△PCF是等腰三角形;(3)连结OE.由AB为⊙O的直径,得到∠ACB=90°,根据角平分线的定义得到∠BCE=45°,设⊙O 的半径为r,则OF=6﹣r,根据勾股定理列方程即可得到结论.
【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网