题目内容
【题目】问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD.(S表示面积)
实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.
如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+.
如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与之间的数量关系,并说明理由.
迁移应用:
请直接应用“实验探究”中发现的结论解答下列问题:
如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF=,求EG的长.
【答案】问题呈现:证明见解析;实验探究:结论:2S四边形EFGH=S矩形ABCD﹣;(3).
【解析】试题分析:只要说明S△HGE=S矩形AEGD,同理S△EGF=S矩形BEGC,由此可得S四边形EFGH=S△HGE+S△EFG=S矩形ABCD;
实验探究:结论:2S四边形EFGH=S矩形ABCD-S矩形A1B1C1D1.根据S△EHC1=S矩形AEC1H,S△HGD1=S矩形HDGD1,S△EFB1=S矩形EBFB1,S△FGA1=S矩形CFA1G,即可证明;
迁移应用:利用探究的结论即可解决问题.
试题解析:
如图中,
∵四边形ABCD是矩形,
∴AB∥CD,∠A=90°,
∵AE=DG,
∴四边形AEGD是矩形,
∴S△HGE=S矩形AEGD,
同理S△EGF=S矩形BEGC,
∴S四边形EFGH=S△HGE+S△EFG=S矩形ABCD.
故答案为:S四边形EFGH=S矩形ABCD.
实验探究:结论:2S四边形EFGH=S矩形ABCD﹣S矩形A1B1C1D1.
理由:∵S△EHC1=S矩形AEC1H,S△HGD1=S矩形HDGD1,S△EFB1=S矩形EBFB1,S△FGA1=S矩形CFA1G,
∴S四边形EFGH=S△EHC1+S△HGD1+S△EFB1+S△FGA1﹣S矩形A1B1C1D1,
∴2S四边形EFGH=2S△EHC1+2S△HGD1+2S△EFB1+2S△FGA1﹣2S矩形A1B1C1D1,
∴2S四边形EFGH=S矩形ABCD﹣S矩形A1B1C1D1.
故答案为:2S四边形EFGH=S矩形ABCD﹣S矩形A1B1C1D1
迁移应用:解:(1)如图中,
∵2S四边形EFGH=S矩形ABCD﹣S矩形A1B1C1D1.
∴S矩形A1B1C1D1=25﹣2×9=7=A1B1A1D1,
∵正方形的面积为25,
∴边长为5,
∵A1D12=HF2﹣52=29﹣25=4,
∴A1D1=2,A1B1=,
∴EG2=A1B12+52= ,
∴EG=
故答案为:.
【题目】学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:
碟子的个数 | 碟子的高度(单位:cm) |
1 | 2 |
2 | 2+1.5 |
3 | 2+3 |
4 | 2+4.5 |
… | … |
(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);
(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.
【题目】自行车厂某周计划生产2100辆电动车,平均每天生产电动车300辆.由于各种原因,实际每天的生产量与计划每天的生产量相比有出入,下表是该周的实际生产情况(超产记为正、减产记为负,单位:辆):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
减增 |
(1)该厂星期一生产电动车________辆;
(2)生产量最多的一天比生产量最少的一天多生产电动车________辆;
(3)该厂实行记件工资制,每生产一辆车可得60元,那么该厂工人这一周的工资总额是多少元?