题目内容

【题目】若关于x的一元二次方程ax2+bx10a≠0)有一根为x2019,则一元二次方程ax12+bx1)=1必有一根为(  )

A.B.2020C.2019D.2018

【答案】B

【解析】

对于一元二次方程ax-12+bx-1-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程ax-12+bx-1=1必有一根为x=2020

对于一元二次方程ax-12+bx-1-1=0

t=x-1

所以at2+bt-1=0

而关于x的一元二次方程ax2+bx-1=0a≠0)有一根为x=2019

所以at2+bt-1=0有一个根为t=2019

x-1=2019

解得x=2020

所以一元二次方程ax-12+bx-1=1必有一根为x=2020

故选B

练习册系列答案
相关题目

【题目】2017年3月全国两会胜利召开,某学校就两会期间出现频率最高的热词:A.蓝天保卫战,B.不动产保护,C.经济增速,D.简政放权等进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:

(1)本次调查中,一共调查了  名同学;

(2)条形统计图中,m=  ,n=  

(3)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?

【答案】(1)300;(2)60,90;(3)从该校学生中随机抽取一个最关注热词D的学生的概率是

【解析】试题分析:(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;

(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C所对应的人数﹣D所对应的人数,即可解答;

(3)根据概率公式,即可解答.

试题解析:(1)105÷35%=300(人),

故答案为:300;

(2)n=300×30%=90(人),

m=300﹣105﹣90﹣45=60(人).

故答案为:60,90;

(3)从该校学生中随机抽取一个最关注热词D的学生的概率是=

答:从该校学生中随机抽取一个最关注热词D的学生的概率是

型】解答
束】
26

【题目】已知正方形ABCD的边长为8,点EBC的中点,连接AE,并延长交射线DC于点F,将ABE沿着直线AE翻折,点B落在B′处,延长AB′,交直线CD于点M

1)判断AMF的形状并证明;

2)将正方形变为矩形ABCD,且AB=6BC=8,若B′恰好落在对角线AC上时,得到图2,此时CF=_____ =_____

3)在(2)的条件下,点EBC边上.设BExABE沿直线AE翻折后与矩形ABCD重合的面积为y,求yx之间的函数关系式.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网