题目内容
【题目】2017年3月全国两会胜利召开,某学校就两会期间出现频率最高的热词:A.蓝天保卫战,B.不动产保护,C.经济增速,D.简政放权等进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?
【答案】(1)300;(2)60,90;(3)从该校学生中随机抽取一个最关注热词D的学生的概率是.
【解析】试题分析:(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;
(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C所对应的人数﹣D所对应的人数,即可解答;
(3)根据概率公式,即可解答.
试题解析:(1)105÷35%=300(人),
故答案为:300;
(2)n=300×30%=90(人),
m=300﹣105﹣90﹣45=60(人).
故答案为:60,90;
(3)从该校学生中随机抽取一个最关注热词D的学生的概率是= ,
答:从该校学生中随机抽取一个最关注热词D的学生的概率是.
【题型】解答题
【结束】
26
【题目】已知正方形ABCD的边长为8,点E为BC的中点,连接AE,并延长交射线DC于点F,将△ABE沿着直线AE翻折,点B落在B′处,延长AB′,交直线CD于点M.
(1)判断△AMF的形状并证明;
(2)将正方形变为矩形ABCD,且AB=6,BC=8,若B′恰好落在对角线AC上时,得到图2,此时CF=_____, =_____;
(3)在(2)的条件下,点E在BC边上.设BE为x,△ABE沿直线AE翻折后与矩形ABCD重合的面积为y,求y与x之间的函数关系式.
【答案】(1)△AMF是等腰三角形,理由见解析;(2)10, ;(3) .
【解析】试题分析:(1)利用正方形的性质,∠BAE=∠F,又因为∠BAE=∠MAE,所以可得,△AMF是等腰三角形.AC=CF,
(2)由(1)结论可知, ∴CF=AC=10,利用∠ACB的正弦求值.
(3)分类讨论,当0<x≤6时,△ABE翻折后都在矩形内部,所以重合部分面积就是三角形面积;当6<x≤8时,设EB交AD于M,重叠部分的面积=△ABE的面积减去△AB′M的面积,得到函数解析式.
试题解析:
解:(1)结论:△AMF是等腰三角形.理由如下:
如图1中,
∵四边形ABCD是正方形,
∴AB∥DF,
∴∠BAE=∠F,
由翻折可知∠BAE=∠MAE,
∴∠F=∠MAE,
∴MA=MF,
∴△AMF是等腰三角形.
(2)如图2中,
由(1)可知△ACF是等腰三角形,AC=CF,
在Rt△ABC中,∵AB=6,BC=8,
∴AC==10,
∴CF=AC=10,
∵BE=BE′,
∴=sin∠ACB=,
故答案为10, .
(3)①如图3中,当0<x≤6时,△ABE翻折后都在矩形内部,所以重合部分面积就是三角形面积,
∴y=6x=3x,
∴y=3x.
②如图4中,当6<x≤8时,设EB交AD于M,
∴重叠部分的面积=△ABE的面积减去△AB′M的面积,
设B′M=a,则EM=x﹣a,AM=x﹣a,
在Rt△AB′M中,由勾股定理可得62+a2=(x﹣a)2,
∴a=,
∴y=3x﹣×6×=x+.
综上所述,y=.