题目内容

【题目】如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.

【答案】证明:∵四边形ABCD是平行四边形,

∴AB=CD,AB∥CD,

∴∠ABE=∠CDF,

∵AE⊥BD,CF⊥BD,

∴AE∥CF,∠AEB=∠CFD=90°,

在△AEB和△CFD中,

∴△AEB≌△CFD(AAS),

∴AE=CF,

∴四边形AECF是平行四边形.


【解析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.
【考点精析】认真审题,首先需要了解平行四边形的判定与性质(若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网