题目内容
【题目】阅读材料并解答下列问题:如图1,把平面内一条数轴绕原点逆时针旋转角得到另一条数轴轴和轴构成一个平面斜坐标系
规定:过点作轴的平行线,交轴于点,过点作轴的平行线,交轴于点,若点在轴对应的实数为,点在轴对应的实数为,则称有序实数对为点在平面斜坐标系中的斜坐标.如图2,在平面斜坐标系中,已知,点的斜坐标是,点的斜坐标是
(1)连接,求线段的长;
(2)将线段绕点顺时针旋转到(点与点对应),求点的斜坐标;
(3)若点是直线上一动点,在斜坐标系确定的平面内以点为圆心,长为半径作,当⊙与轴相切时,求点的斜坐标,
【答案】(1);(2)点的斜坐标为(9,);(3)点D的斜坐标为:(,3)或(6,12).
【解析】
(1)过点P作PC⊥OA,垂足为C,由平行线的性质,得∠PAC=,由AP=6,则AC=3,,再利用勾股定理,即可求出OP的长度;
(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,由旋转的性质,得到OP=OQ,∠COP=∠BOQ,则△COP≌△BOQ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q的斜坐标;
(3)根据题意,可分为两种情况进行①当OP和CM恰好是平行四边形OMPC的对角线时,此时点D是对角线的交点,求出点D的坐标即可;②取OJ=JN=CJ,构造直角三角形OCN,作∠CJN的角平分线,与直线OP相交与点D,然后由所学的性质,求出点D的坐标即可.
解:(1)如图,过点P作PC⊥OA,垂足为C,连接OP,
∵AP∥OB,
∴∠PAC=,
∵PC⊥OA,
∴∠PCA=90°,
∵点的斜坐标是,
∴OA=3,AP=6,
∴,
∴,
∴,,
在Rt△OCP中,由勾股定理,得
;
(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,如图:
由旋转的性质,得OP=OQ,∠POQ=60°,
∵∠COP+∠POA=∠POA+∠BOQ=60°,
∴∠COP=∠BOQ,
∵OB=OC=6,
∴△COP≌△BOQ(SAS);
∴CP=BQ=3,∠OCP=∠OBQ=120°,
∴∠EBQ=60°,
∵EQ∥OC,
∴∠BEQ=60°,
∴△BEQ是等边三角形,
∴BE=EQ=BQ=3,
∴OE=6+3=9,OF=EQ=3,
∵点Q在第四象限,
∴点的斜坐标为(9,);
(3)①取OM=PC=3,则四边形OMPC是平行四边形,连接OP、CM,交点为D,如图:
由平行四边形的性质,得CD=DM,OD=PD,
∴点D为OP的中点,
∵点P的坐标为(3,6),
∴点D的坐标为(,3);
②取OJ=JN=CJ,则△OCN是直角三角形,
∵∠COJ=60°,
∴△OCJ是等边三角形,
∴∠CJN=120°,
作∠CJN的角平分线,与直线OP相交于点D,作DN⊥x轴,连接CD,如图:
∵CJ=JN,∠CJD=∠NJD,JP=JP,
∴△CJD≌△NJD(SAS),
∴∠JCD=∠JND=90°,
则由角平分线的性质定理,得CD=ND;
过点D作DI∥x轴,连接DJ,
∵∠DJN=∠COJ=60°,
∴OI∥JD,
∴四边形OJDI是平行四边形,
∴ID=OJ=JN=OC=6,
在Rt△JDN中,∠JDN=30°,
∴JD=2JN=12;
∴点D的斜坐标为(6,12);
综合上述,点D的斜坐标为:(,3)或(6,12).