题目内容

【题目】如图,已知点O (0,0),A (-5,0),B (2,1),抛物线(h为常数)与y轴的交点为C

(1) 抛物线经过点B,求它的解析式,并写出此时抛物线的对称轴及顶点坐标;

(2)设点C的纵坐标为,求的最大值,此时抛物线上有两点,其中,比较的大小;

(3)当线段OA被只分为两部分,且这两部分的比是1:4时,求h的值。

【答案】(1)对称轴为:,顶点.(2).(3)的值为

【解析】试题(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;

(2)把点C的坐标代入函数解析式得到:yC=-h2+1,则由二次函数的最值的求法易得yc的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;

(3)根据已知条件“O(0,0),A(-5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(-1,0),(-4,0).由二次函数图象上点的坐标特征可以求得h的值.

试题解析:(1)把代入,得:

解析式为:(或).

对称轴为:,顶点

(2)点的横坐标为0,则

时,有最大值为1.

此时,抛物线为:,对称轴为:y轴),

时,随着的增大而减小,

时,

(3)把线段OA分1:4两部分的点是

代入,得:

时,线段OA被分为三部分,不合题意,舍去.

同样,把代入

得:(舍去)

的值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网