题目内容
【题目】已知:如图△ABC中,BD,CE分别是AC,AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.
【答案】见解析.
【解析】
首先证明出∠ABD=∠ACE,再有条件BQ=AC,CF=AB可得△ABQ≌△ACF,进而得到∠F=∠BAQ,然后再根据∠F+∠FAE=90°,可得∠BAQ+∠FAE═90°,进而证出AF⊥AQ.
解:证明:∵BD⊥AC,CE⊥AB,
∴∠ABD+∠BAC=90°,∠ACE+∠BAC=90°,
∴∠ABD=∠ACE,
又∵BQ=AC,CF=AB,
∴△ABQ≌△FCA(SAS),
∴AQ=AF,∠F=∠BAQ,
BD⊥AC,即∠F+∠FAE=90°,
∴∠QAE+∠FAE=90°,即∠FAQ=90°,
∴AF⊥AQ.
练习册系列答案
相关题目
【题目】某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.
设小明计划今年夏季游泳次数为x(x为正整数).
(I)根据题意,填写下表:
游泳次数 | 10 | 15 | 20 | … | x |
方式一的总费用(元) | 150 | 175 | ______ | … | ______ |
方式二的总费用(元) | 90 | 135 | ______ | … | ______ |
(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?
(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.