题目内容
【题目】阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=4,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).
(1)请按照上述思路完成小明遇到的这个问题
(2)参考小明思考问题的方法,解决问题:
如图3,已知ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠DGC的度数.
【答案】(1)BC+DE=5;(2)∠DGC=60°.
【解析】分析:(1)由DE∥BC,EF∥DC,可证得四边形DCFE是平行四边形,即可得EF=CD=3,CF=DE,即可得BC+DE=BF,然后利用勾股定理,求得BC+DE的值;
(2)首先连接AE,CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等边三角形,则可求得答案.
详解:(1)∵DE∥BC,EF∥DC,
∴四边形DCFE是平行四边形,
∴EF=CD=3,CF=DE.
∵CD⊥BE,∴EF⊥BE,
∴BC+DE=BC+CF=BF==5.
(2)解决问题:
连接AE,CE,如图3.
∵四边形ABCD是平行四边形,∴AB∥DC.
∵四边形ABEF是矩形,∴AB∥FE,BF=AE,∴DC∥FE,∴四边形DCEF是平行四边形,∴CE∥DF.
∵AC=BF=DF,∴AC=AE=CE,∴△ACE是等边三角形,∴∠ACE=60°.
∵CE∥DF,∴∠DGC=∠ACE=60°.
练习册系列答案
相关题目