题目内容

【题目】圆柱底面周长为4cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为________cm.

【答案】15

【解析】分析:要求圆柱体中两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.

本题解析:

圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;

即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;

∵圆柱底面半径为2πcm,

∴长方形的宽即是圆柱体的底面周长:2π×2π=4cm;

又∵圆柱高为9cm,

∴小长方形的一条边长是3cm;

根据勾股定理求得AC=CD=DB=5cm;

∴AC+CD+DB=15cm.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网