题目内容

如图,Rt△ABC中,AC=BC=8,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(2,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形B1C1F1E1与△AEF重叠的面积为S.

(1)求折痕EF的长;
(2)直接写出S与t的函数关系式及自变量t的取 值范围.
(3)若四边形BCFE平移时,另有一动点H与四边形BCFE同时出发,以每秒个单位长度从点A沿射线AC运动,试求出当t为何值时,△HE1E为等腰三角形?
(1)(2) ()(3)或2

试题分析:1)∵折叠后BE与EA所在直线重合

∴EF⊥EA
又Rt△ABC中AC=BC
∴∠CAB=45°
∴EF=EA
∵A(2,0) 
∴OA=OE=2 , AE=                            
∴折痕EF=   
(2)
   ()
S=4    ()
  ()
 (
(3)



当E1E=EE1
4t2-8

∴t=
当E1E=EH时,


当E1H=EH时

    或0
综上:或2
点评:此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的思维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网