题目内容

【题目】如图1,在正方形ABCD中,点EF分别在ABBC上,且AEBF.

1试探索线段AFDE的数量关系,写出你的结论并说明理由;

2连接EFDF,分别取AEEFFDDA的中点HIJK,则四边形HIJK是什么特殊四边形?请在图2中补全图形,并说明理由.

【答案】(1)AF=DE.理由见解析;(2)见解析

【解析】试题分析:(1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE.
(2)根据已知可得HK,KJ,IJ,HI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.

试题解析:

(1)AF=DE.

理由:∵四边形ABCD是正方形,

∴AB=AD,∠DAB=∠ABC=90°.

又∵AE=BF,

∴△DAE≌△ABF(SAS).

∴AF=DE.

(2)如图所示:

四边形HIJK是正方形.理由:

∵H,I,J,K分别是AE,EF,FD,DA的中点,

∴HI=KJ=AF,HK=IJ=ED.

∵AF=DE,

∴HI=KJ=HK=IJ.

∴四边形HIJK是菱形.

∵△DAE≌△ABF,

∴∠ADE=∠BAF.

∵∠ADE+∠AED=90°,

∴∠BAF+∠AED=90°.

∴AF⊥DE.

∵HK∥DE,HI∥AF,

∴HK⊥HI.

∴∠KHI=90°.

∴四边形HIJK是正方形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网