题目内容
【题目】ΔABC、ΔCDE都是等边三角形,AD、BE相交于点O,点M、点N分别是线段AD、BE的中点.
(1)证明: AD=BE.(2)求∠DOE的角度。(3)证明:ΔMNC是等边三角形.
【答案】(1)详见解析;(2)60°;(3)详见解析
【解析】
提示:先证明ΔACD≌BCE(SAS).利用第(1)问证明的结论,用三角形内角和求出∠DOE=60°,易得ΔACM≌ΔBCN(SAS),从而得到ΔCMN为等边三角形.
证明:(1)∵△ABC、△CDE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∵∠ACB+∠BCD=∠ACD,
∠DCE+∠BCD=∠BCE,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)由(1)知∵△ACD≌△BCE,
∴∠ACD=∠BEC,
∵三角形DCE是等边三角形,
∴∠CED=∠CDE=60°
∴∠ADE+∠BED=∠ADC+∠CDE+∠BED=∠ADC+60°+∠BED=∠CED+60°=60°+60°=120°
∴∠DOE=180°-(∠ADE+∠BED)=60°
(3)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵点M、N分别是线段AD、BE的中点,AD=BE,
∴AM=BN,
在△ACM和△BCN中,
AC=BC
∠CAD=∠CBE
AM=BN,
∴△ACM≌△BCN(SAS),
∴CM=CN,∠ACM=∠BCN,
∴∠MCN=∠BCM+∠BCN=∠BCM+∠ACM=∠ACB=60°,
∴△MNC是等边三角形.
练习册系列答案
相关题目