题目内容

如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连接EG并延长交DC于M,过M(1,-1)作MN⊥AB,垂足为N,MN交BD于P.
(1)找出图中一对全等三角形,并加以证明(正方形的对角线分正方形得到的两个三角形除外);
(2)设正方形ABCD的边长为1,按照题设方法作出的四边形BGMP,若是菱形,求BE的长.
(1)△DMP≌△EBG.
证明:∵四边形ABCD和四边形BEFG均为正方形,
∴DC=BC,∠C=∠GBE=90°,
∠CDB=∠BEG=∠BGE=45°,
∴∠CGM=45°,
∴∠CMG=∠CGM,
∴CM=CG,
∴DM=BG,
∵MN⊥AB,
∴∠DMP=90°.
∴∠DMP=∠GBE=90°.
∴△DMP≌△EBG.

(2)解法一:设正方形BEFG的边长为x,
∵BGMP是菱形,
则DM=MP=BG=MG=x,MC=CG=1-x,
在Rt△MCG中,有(1-x)2+(1-x)2=x2
即x2-4x+2=0
解这个方程得x1=2-
2
,x2=2+
2

∵BE<AB,
∴x2=2+
2
舍去.
∴当正方形BEFG的边长为2-
2
时,四边形BGMP是菱形.

解法二:设正方形BEFG的边长为x,
∵BGMP是菱形,
∴DM=MP=MG=BG=x.
∴MC=CG=1-x.
在Rt△MCG中,
∵°CMG=45°,
∴sin∠CMG=
CG
MG

2
2
=
1-x
x

x=
2
2+
2
=2-
2

∴当正方形BEFG的边长为2-
2
时,四边形BGMP是菱形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网