题目内容
【题目】如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为 .
【答案】3
【解析】
试题分析:先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数y=﹣和y=的图象上,可得到A点坐标为(﹣,b),B点坐标为(,b),从而求出AB的长,然后根据三角形的面积公式计算即可.
解:设P(0,b),
∵直线AB∥x轴,
∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上,
∴当y=b,x=﹣,
即A点坐标为(﹣,b),
又∵点B在反比例函数y=的图象上,
∴当y=b,x=,
即B点坐标为(,b),
∴AB=﹣(﹣)=,
∴S△ABC=ABOP=b=3.
故答案为:3.
练习册系列答案
相关题目