题目内容

【题目】 如图,在平面直角坐标系中直线y=x﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).

(1)求反比例函数的关系式;

(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且ABC的面积为18,求平移后的直线的函数关系式.

【答案】1y=2y=x+7

【解析】

试题分析:(1)设反比例解析式为y=,将B坐标代入直线y=x﹣2中求出m的值,确定出B坐标,将B坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;

(2)过C作CD垂直于y轴,过B作BE垂直于y轴,设y=x﹣2平移后解析式为y=x+b,C坐标为(a,a+b),三角形ABC面积=梯形BEDC面积+三角形ABE面积﹣三角形ACD面积,由已知三角形ABC面积列出关系式,将C坐标代入反比例解析式中列出关系式,两关系式联立求出b的值,即可确定出平移后直线的解析式.

解:(1)将B坐标代入直线y=x﹣2中得:m﹣2=2,

解得:m=4,

则B(4,2),即BE=4,OE=2,

设反比例解析式为y=

将B(4,2)代入反比例解析式得:k=8,

则反比例解析式为y=

(2)设平移后直线解析式为y=x+b,C(a,a+b),

对于直线y=x﹣2,令x=0求出y=﹣2,得到OA=2,

过C作CDy轴,过B作BEy轴,

将C坐标代入反比例解析式得:a(a+b)=8,

SABC=S梯形BCDE+SABE﹣SACD=18,

×(a+4)×(a+b﹣2)+×(2+2)×4﹣×a×(a+b+2)=18,

解得:a+b=8,

a=1,b=7,

则平移后直线解析式为y=x+7.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网