题目内容
【题目】如图①,C地位于A、B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计),已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后,甲、乙两人离C地的距离为y1m、y2m,图②中线段OM表示y1与x的函数图象.
(1)甲的速度为______m/min.乙的速度为______m/min.
(2)在图②中画出y2与x的函数图象,并求出乙从A地前往B地时y2与x的函数关系式.
(3)求出甲、乙两人相遇的时间.
(4)请你重新设计题干中乙骑车的条件,使甲、乙两人恰好同时到达B地.
要求:①不改变甲的任何条件.
②乙的骑行路线仍然为从C地到A地再到B地.
③简要说明理由.
④写出一种方案即可.
【答案】(1)80;200;(2)画图如图②见解析;当乙由A到C时,4.5≤x≤9,y2=1800-200x,当乙由C到B时,9≤x≤21,y2=200x-1800;(3)甲、乙两人相遇的时间为第15min;(4)甲、乙同时到达A.
【解析】
(1)由图象求出甲的速度,再由条件求乙的速度;
(2)由乙的速度计算出乙到达A、返回到C和到达B所用的时间,图象可知,应用方程思想列出函数关系式;
(3)根据题意,甲乙相遇时,乙与甲的路程差为1800,列方程即可.
(4)由甲到B的时间,反推乙到达B所用时间也要为30min,则由路程计算乙所需速度即可.
解:(1)根据y1与x的图象可知,
甲的速度为,
则乙的速度为2.5×80=200m/min
故答案为:80,200
(2)根据题意画图如图②
当乙由A到C时,4.5≤x≤9
y2=900-200(x-4.5)=1800-200x
当乙由C到B时,9≤x≤21
y2=200(x-9)=200x-1800
(3)由已知,两人相遇点在CB之间,
则200x-80x=2×900
解得x=15
∴甲、乙两人相遇的时间为第15min.
(4)改变乙的骑车速度为140m/min,其它条件不变
此时甲到B用时30min,乙的用时为min
则甲、乙同时到达A.