题目内容
【题目】已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为(即cosC=),则AC边上的中线长是_____________.
【答案】或
【解析】
解:分两种情况:
①△ABC为锐角三角形时,如图1.
作△ABC的高AD,BE为AC边的中线.
∵在直角△ACD中,AC=a,cosC=,
∴CD=a,AD=a.
∵在直角△ABD中,∠ABD=45°,
∴BD=AD=a,
∴BC=BD+CD=a.
在△BCE中,由余弦定理,得
BE2=BC2+EC2-2BCECcosC
∴BE=;
②△ABC为钝角三角形时,如图2.
作△ABC的高AD,BE为AC边的中线.
∵在直角△ACD中,AC=a,cosC=,
∴CD=a,AD=a.
∵在直角△ABD中,∠ABD=45°,
∴BD=AD=a,
∴BC=BD+CD=a.
在△BCE中,由余弦定理,得
BE2=BC2+EC2-2BCECcosC
∴BE=.
综上可知AC边上的中线长是或.
练习册系列答案
相关题目