题目内容
【题目】下列条件中,能判定四边形ABCD为平行四边形的个数是( )
①AB∥CD,AD=BC ; ②AB=CD,AD=BC;③∠A=∠B,∠C=∠D; ④AB=AD,CB=CD.
A. 1个B. 2个C. 3个D. 4个
【答案】A
【解析】
根据平行四边形的判定定理(①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形)进行判断即可.
A、由AB∥CD,AD=BC,四边形ABCD也可以是等腰梯形,故本选项错误;
B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项正确
C、∵∠A=∠B,∠C=∠D,∠A+∠B+∠C+∠D=360°,
∴2∠B+2∠C=360°,
∴∠B+∠C=180°,
∴AB∥CD,但不能推出其它条件,即不能推出四边形ABCD是平行四边形,故本选项错误;
D、根据AB=AD,CB=CD不能推出四边形ABCD是平行四边形,故本选项错误;
故选:A.
【题目】探究逼近的有理近似值.
方法介绍:
经过步操作(为正整数)不断寻找有理数,,使得,并且让的值越来越小,同时利用数轴工具将任务几何化,直观理解通过等分线段的方法不断缩小对应的点所在线段的长度(二分法)
思路
在数轴上记,对应的点分别为,和的平均数对应线段的中点(记为).通过判断还是,得到点是在二等分后的“左线段”上还是“右线段”上,重复上述步骤,不断得到,从而得到更精确的近似值.
具体操作步骤及填写“阅读活动任务单”:
(1)当时,
①寻找左右界值:先寻找两个连续正整数,使得.
因为,所以,那么,,线段的中点对应的数.
②二分定位:判断点在“左线段”上还是在“右线段”上.
比较7与的大小,从而确定与的大小;
因为 > (填 “>”或“<”),得到点在线段 上(填“”或“”).
(2)当时,在(1)中所得的基础上,仿照以上步骤,继续进行下去,得到表中时的相应内容.
请继续仿照以上步骤操作下去,补全“阅读活动任务单”:
的值 | 还是 | 点在“左线段”上还是“右线段”上 | 得出更精确的与,,的大小关系 | |||
1 | 2 | 3 | 2.5 | 点在线段上 | ||
2 | 2.5 | 3 | 2.75 | 点在线段上 | ||
3 | 2.5 | 2.75 | 2.625 | |||
4 |