题目内容
如图,在平面直角坐标系xOy中,O是坐标原点,已知A(3,2)、B(-2,3),则
∠OAB的等于
∠OAB的等于
A.30° | B.45° | C.60° | D.75° |
B
连接OB,根据点的坐标分别求出OB,OA,AB的长,再根据勾股定理的逆定理可得△OAB为等腰直角三角形,根据等腰直角三角形的性质即可求解.
解:连接OB.
则OA==,OB==,AB==.
∵()2+()2=()2,
∴△OAB为等腰直角三角形,
∴∠OAB=45°.
故选B.
点评:综合性考查了平面直角坐标系两点间的距离公式,勾股定理的逆定理,等腰直角三角形的判定和性质.
解:连接OB.
则OA==,OB==,AB==.
∵()2+()2=()2,
∴△OAB为等腰直角三角形,
∴∠OAB=45°.
故选B.
点评:综合性考查了平面直角坐标系两点间的距离公式,勾股定理的逆定理,等腰直角三角形的判定和性质.
练习册系列答案
相关题目