题目内容

【题目】一个正三角形和一副三角板(分别含30°45°)摆放成如图所示的位置,且ABCD.则∠1∠2__________

【答案】75°

【解析】

连接AC,根据平行线的性质求出∠BAC+ACD=180°,再由∠BAG=30°,∠ECD=60°可得出∠EAC+ACE的度数,根据三角形内角和定理得出∠AEC的度数,由补角的定义得出∠GEF的度数,同理可用∠1表示出∠EGF,用∠2表示出∠GFE,再由三角形内角和定理即可得出结论.

解:连接AC

ABCD

∴∠BAC+ACD=180°,

∵∠BAG=30°,∠ECD=60°,

∴∠EAC+ACE=180°-30°-60°=90°,

∵∠CED=60°,

∴∠GEF=180°-90°-60°=30°,

同理∠EGF=180°-1-90°=90°-1,∠GFE=180°-45°-2=135°-2

∵∠GEF+EGF+GFE=180°,即30°+90°-1+135°-2=180°,解得∠1+2=75°.

故答案为:75°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网