题目内容
【题目】如图,四边形ABCD是菱形,AB=2,∠ABC=30°,点E是射线DA上一动点,把△CDE沿CE折叠,其中点D的对应点为点D′,若CD′垂直于菱形ABCD的边时,则DE的长为_____.
【答案】或2或2﹣2或2+2.
【解析】
分情况进行讨论:
①当D'C⊥AD时,如图1,根据30度的余弦列式可得DE的长;
②当CD'⊥AB时,如图2,过E作EF⊥CD于F,设CF=EF=x,则ED=2x,DF=x,根据CD=CF+DF=2,列方程可得DE的长;
③当CD'⊥BC时,延长D'C交AD于F,分别计算EF和DF的长,可得DE的长;
④当D'C⊥CD时,如图4,延长D'C交DE于F,分别计算EF和DF的长,可得DE的长.
分4种情况:
①当D'C⊥AD时,如图1,设DE=D'E=x,
由折叠得:CD=CD'=2,
∵四边形ABCD是菱形,
∴∠D=∠B=30°,
∴∠D=∠D'=30°,
Rt△CFD中,CF=CD=1,
∴D'F=CD'-CF=2-1=1,
Rt△D'FE中,cos30°=,
∴,
∴DE=D'E=;
②当CD'⊥AB时,如图2,过E作EF⊥CD于F,
∵AB∥CD,
∴∠B+∠BCD=180°,
∵∠B=30°,
∴∠BCD'=60°,∠DCD'=150°-60°=90°,
由折叠得∠ECD=∠DCD'=45°,
∴△ECF是等腰直角三角形,
设CF=EF=x,则ED=2x,DF=x,
∵CD=CF+DF=2,
∴x+x=2,
x=-1,
∴DE=2x=2-2;
③当CD'⊥BC时,如图3,延长D'C交AD于F,则D'C⊥ED,
Rt△CFD中,∠D=30°,CD=2,
∴CF=1,DF=,
Rt△D'EF中,D'F=3,∠D'=30°,
∴EF=,
∴DE=EF+DF=2;
④当D'C⊥CD时,如图4,延长D'C交DE于F,
∵∠DCD'=90°,
∴∠FCD=90°,
∵CD=2,∠FDC=30°,
∴CF=,DF=2FC=,
由折叠得:∠ECD=∠ECD'==135°,
∴∠DEC=∠D'EC=15°,
∴∠FEB=∠FD'E=30°,
∴EF=D'F=+2,
∴DE=EF+DF=2+2,
综上所述,DE的长为或2或2-2或2+2.
故答案为或2或2-2或2+2.