题目内容

如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠BAD;
(2)若sin∠BEC=
3
5
,求DC的长.
(1)证明:连接OC,由DC是切线得OC⊥DC;
又AD⊥DC,
∴ADOC,
∴∠DAC=∠ACO.
又由OA=OC得∠BAC=∠ACO,
∴∠DAC=∠BAC.
即AC平分∠BAD.

(2)方法一:∵AB为直径,
∴∠ACB=90°
又∵∠BAC=∠BEC,
∴BC=AB•sin∠BAC=AB•sin∠BEC=6.
∴AC=
AB2-BC2
=8

又∵∠DAC=∠BAC=∠BEC,且AD⊥DC,
∴CD=AC•sin∠DAC=AC•sin∠BEC=
24
5

方法二:∵AB为直径,
∴∠ACB=90°.
又∵∠BAC=∠BEC,
∴BC=AB•sin∠BAC=AB•sin∠BEC=6.
AC=
AB2-BC2
=8

又∵∠DAC=∠BAC,∠D=∠ACB=90°,
∴△ADC△ACB,
DC
CB
=
AC
AB
,即
DC
6
=
8
10

解得DC=
24
5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网