题目内容
【题目】如图,在平面直角坐标系中,直线y1=x+1与双曲线(k>0)相交于点A、B,已知点A坐标(2,m).
(1)求k的值;
(2)求点B的坐标,并观察图象,写出当时,x的取值范围.
【答案】(1)k=6;(2)当x<﹣3或0<x<2时,;
【解析】(1)设A(2,m),将A纵坐标代入一次函数解析式求出m的值,确定出A坐标,代入反比例解析式求出k的值,即可确定出反比例解析式;
(2)联立两函数解析式求出B的坐标,由A与B横坐标,利用图象即可求出当时,自变量x的取值范围.
(1)∵A(2,m),
将A(2,m)代入直线y=x+1得:m=3,即A(2,3)
将A(2,3)代入关系式 y= 得:k=6;
(2)联立直线与反比例解析式得:,
消去y得: x+1=,
解得: x=2或x=﹣3,
将x=﹣3代入y=x+1, 得:y=﹣3+1=﹣2,即B(﹣3,﹣2),
则当x<﹣3或0<x<2时,.
练习册系列答案
相关题目