题目内容
18、如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:
AE=AF或∠EDA=∠FDA
,并给予证明.分析:要证两三角形全等的判定,已经有∠EAD=∠FAD,AD=AD,所以再添加一对边或一对角相等即可得证.
解答:解:①添加条件:AE=AF,
证明:在△AED与△AFD中,
∵AE=AF,∠EAD=∠FAD,AD=AD,
∴△AED≌△AFD(SAS),
②添加条件:∠EDA=∠FDA,
证明:在△AED与△AFD中,
∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA,
∴△AED≌△AFD(ASA).
证明:在△AED与△AFD中,
∵AE=AF,∠EAD=∠FAD,AD=AD,
∴△AED≌△AFD(SAS),
②添加条件:∠EDA=∠FDA,
证明:在△AED与△AFD中,
∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA,
∴△AED≌△AFD(ASA).
点评:本题是开放性题目,主要考查三角形全等的判定方法,只要符合题意即可.
练习册系列答案
相关题目