题目内容
【题目】如图,已知AB=A1B,在AA1的延长线上依次取A2、A3、A4、…、An,并依次在三角形的外部作等腰三角形,使A1C1=A1A2,A2C2=A2A3,A3C3=A3A4,…,An﹣1Cn﹣1=An﹣1An.
记∠BA1A=∠1,∠C1A2A1=∠2,……,以此类推. 若∠B=30°,则∠n=_________°.
【答案】
【解析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠C1A3A2及∠C2A4A3…的度数,从而找出规律即可得出∠An的度数.
解:∵在△ABA1中,∠B=30°,AB=A1B,
∴∠BA1A===75°,
∵A1A2=A1C,∠BA1A是△A1A2C的外角,
∴∠CA2A1===37.5°;
∴∠C1A3A2=18,75°,∠C2A4A3=9.375°,…,
∴∠An=,
故答案为: .
“点睛”本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠C1A3A2及∠C2A4A3…的度数,找出规律是解答此题的关键.
练习册系列答案
相关题目