题目内容
直角梯形ABCD中,∠A=∠D=90°,DC<AB,AB=AD=12,E是边AD上的一点,恰好使CE=10,并且∠CBE=45°,则AE的长是( )
A.2或8 | B.4或6 | C.5 | D.3或7 |
如图,过点B作BF⊥CD交DC的延长线于F,
∵∠A=∠D=90°,AB=AD,
∴四边形ABFD是正方形,
把△ABE绕点B顺时针旋转90°得到△BFG,
则AE=FG,BE=BG,∠ABE=∠FBG,
∵∠CBE=45°,
∴∠CBG=∠CBF+∠FBG=∠CBF+∠ABE=90°-∠CBE=90°-45°=45°,
∴∠CBE=∠CBG,
在△CBE和△CBG中,
,
∴△CBE≌△CBG(SAS),
∴CE=CG,
∴AE+CF=FG+CF=CG=CE,
设AE=x,则DE=12-x,CF=10-x,
∴CD=12-(10-x)=x+2,
在Rt△CDE中,CD2+DE2=CE2,
即(x+2)2+(12-x)2=102,
整理得,x2-10x+24=0,
解得x1=4,x2=6,
所以AE的长是4或6.
故选B.
∵∠A=∠D=90°,AB=AD,
∴四边形ABFD是正方形,
把△ABE绕点B顺时针旋转90°得到△BFG,
则AE=FG,BE=BG,∠ABE=∠FBG,
∵∠CBE=45°,
∴∠CBG=∠CBF+∠FBG=∠CBF+∠ABE=90°-∠CBE=90°-45°=45°,
∴∠CBE=∠CBG,
在△CBE和△CBG中,
|
∴△CBE≌△CBG(SAS),
∴CE=CG,
∴AE+CF=FG+CF=CG=CE,
设AE=x,则DE=12-x,CF=10-x,
∴CD=12-(10-x)=x+2,
在Rt△CDE中,CD2+DE2=CE2,
即(x+2)2+(12-x)2=102,
整理得,x2-10x+24=0,
解得x1=4,x2=6,
所以AE的长是4或6.
故选B.
练习册系列答案
相关题目