题目内容
【题目】如图,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.当△ABP是直角三角形时,t的值为( )
A. B. C. 1或 D. 1或
【答案】C
【解析】
根据题意分三种情况考虑:当∠A=90°;当∠B=90°;当∠APB=90°,根据△ABP为直角三角形,分别求出t的值即可.
解:分三种情况考虑:
当∠A=90°,即△ABP为直角三角形时,
∵∠BOC>∠A,且∠BOC=60°,
∴∠A≠90°,故此情况不存在;
当∠B=90°,即△ABP为直角三角形时,如图所示:
∵∠BOC=60°,
∴∠BPO=30°,
∴OP=2OB=2,
∵OP=2t,
∴t=1;
当∠APB=90°,即△ABP为直角三角形时,过P作PD⊥AB,
∴OD=OPcos∠BOC=t,PD=OPsin∠BOC=t,
∴AD=AO+OD=2+t,BD=OB﹣OD=1﹣t,即AB=3,
在Rt△ABP中,根据勾股定理得:
AP2+BP2=AB2,即(2+t)2+(t)2+(t)2+(1﹣t)2=32,
解得:t=或(负值舍去),
综上,当t =1或t=时,△ABP是直角三角形.
故选:C.
练习册系列答案
相关题目