题目内容
【题目】如图,直线上有三个正方形
,若正方形
,
的面积分别为8和15,则正方形
的面积为( )
A.23B.25C.30D.35
【答案】A
【解析】
根据正方形的性质得出∠EFG=∠EGH=∠HMG=90°,EG=GH,求出∠FEG=∠HGM,证△EFG≌△GMH,推出FG=MH,GM=EF,求出EF2=7,HM2=15,求出B的面积为EG2=EF2+FG2=EF2+HM2,代入求出即可.
解:如图,
根据正方形的性质得出∠EFG=∠EGH=∠HMG=90°,EG=GH,
∵∠FEG+∠EGF=90°,∠EGF+∠HGM=90°,
∴∠FEG=∠HGM,
在△EFG和△GMH中,
,
∴△EFG≌△GMH(AAS),
∴FG=MH,GM=EF,
∵A和C的面积分别为8和15,
∴EF2=8,HM2=15,
∴B的面积为EG2=EF2+FG2=EF2+HM2=8+15=23,
故选:A.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
.A课程成绩的频数分布直方图如下(数据分成6组:
,
,
,
,
,
);
.A课程成绩在
这一组是:
70 71 71 71 76 76 77 78
79 79 79
.A,B两门课程成绩的平均数、中位数、众数如下:
课程 | 平均数 | 中位数 | 众数 |
A | |||
B | 70 | 83 |
根据以上信息,回答下列问题:
(1)写出表中的值;
(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;
(3)假设该年级学生都参加此次测试,估计A课程成绩超过分的人数.