题目内容
【题目】方程:2x2=5x+3的根是( )
A.x1=-6,x2=1
B.x1=3,x2=-1
C.x1=1,x2=
D.x1= - ,x2=3
【答案】D
【解析】解答:移项,得2x2-5x-3=0, 这里a=2,b=-5,c=-3,
∵b2-4ac=(-5)2-4×2×(-3)=25+24=49>0,
∴x= 或-
所以选D.
分析:方程整理为一般形式,找出a , b , c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.
【考点精析】通过灵活运用公式法,掌握要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之即可以解答此题.
练习册系列答案
相关题目