题目内容
【题目】已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.
(1)求证:△MED∽△BCA;
(2)求证:△AMD≌△CMD;
(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=S1时,求cos∠ABC的值.
【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=.
【解析】
(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;
(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;
(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以,所以S△MCB=S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1=S1,由于,从而可知,设ME=5x,EB=2x,从而可求出AB=14x,BC=,最后根据锐角三角函数的定义即可求出答案.
(1)∵MD∥BC,
∴∠DME=∠CBA,
∵∠ACB=∠MED=90°,
∴△MED∽△BCA;
(2)∵∠ACB=90°,点M是斜边AB的中点,
∴MB=MC=AM,
∴∠MCB=∠MBC,
∵∠DMB=∠MBC,
∴∠MCB=∠DMB=∠MBC,
∵∠AMD=180°﹣∠DMB,
∠CMD=180°﹣∠MCB﹣∠MBC+∠DMB=180°﹣∠MBC,
∴∠AMD=∠CMD,
在△AMD与△CMD中,
,
∴△AMD≌△CMD(SAS);
(3)∵MD=CM,
∴AM=MC=MD=MB,
∴MD=2AB,
由(1)可知:△MED∽△BCA,
∴,
∴S△ACB=4S1,
∵CM是△ACB的中线,
∴S△MCB=S△ACB=2S1,
∴S△EBD=S2﹣S△MCB﹣S1=S1,
∵,
∴,
∴,
设ME=5x,EB=2x,
∴MB=7x,
∴AB=2MB=14x,
∵,
∴BC=10x,
∴cos∠ABC=.