题目内容
如图,抛物线交轴于点,交轴于点,在轴上方的抛物线上有两点,它们关于轴对称,点在轴左侧.于点,于点,四边形与四边形的面积分别为6和10,则与的面积之和为 .
4
试题分析:根据抛物线的对称性知:四边形ODBG的面积应该等于四边形ODEF的面积;由图知△ABG和△BCD的面积和是四边形ODBG与矩形OCBA的面积差,由此得解.
由于抛物线的对称轴是y轴,根据抛物线的对称性知:S四边形ODEF=S四边形ODBG=10;
∴S△ABG+S△BCD=S四边形ODBG-S四边形OABC=10-6=4.
点评:能够根据抛物线的对称性判断出四边形ODEF、四边形ODBG的面积关系是解答此题的关键.
练习册系列答案
相关题目