题目内容
【题目】如图,△ABC中,∠ACB=90°,AC=BC,E是BC边上的一点,连接AE,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.
(1)求证:△ACE≌△CBD;
(2)若BE=3,AB=6,求点E到AB的距离.
【答案】(1)见解析;(2)
【解析】
(1)由余角的性质得∠D=∠AEC,根据AAS即可得到结论;
(2)根据条件,先求出AC=BC=6,再根据三角形的面积公式,即可求解.
(1)∵DB⊥BC,CF⊥AE,
∴∠DCB+∠D=∠DCB+∠AEC=90°,
∴∠D=∠AEC,
又∵∠DBC=∠ECA=90°,且BC=CA,
∴△ACE≌△CBD(AAS)
(2)∵∠ACB=90°,AC=BC,AB=6,
∴AC=BC=6,
∴S△ABE= BE×AC=AB×(点E到AB的距离),
∴点E到AB的距离=.
练习册系列答案
相关题目
【题目】某校七年级开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,学校随机抽查了部分学生在这次活动中做家务的时间,并绘制了如下的频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:
等级 | 做家务时间(小时) | 频数 | 百分比 |
A | 0.5≤x<1 | 3 | 6% |
B | 1<x<1.5 | a | 30% |
C | 1.5≤x<2 | 20 | 40% |
D | 2≤x<2.5 | b | m |
E | 2.5≤x<3 | 2 | 4% |
(1)这次活动中抽查的学生有______人,表中a=______,b=______,m=______,并补全频数分布直方图;
(2)若该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有多少人?